Critical Influence of BaCO₃ on Low Temperature Catalytic Activity of BaCO₃/ZrO₂ Catalysts for Oxidative Coupling of Methane

Kai Wang · Shengfu Ji · Xuejun Shi · JingJing Tang

Received: 3 October 2008/Accepted: 12 November 2008/Published online: 13 December 2008 © Springer Science+Business Media, LLC 2008

Abstract During low temperature oxidative coupling of methane reaction, the content of BaCO₃ has an important influence on the catalytic performance. The CH₄ conversion and C₂ selectivity improved with the increase of the BaCO₃ content. Under ignition conditions, the 7.5% BaCO₃/ZrO₂ catalyst had the best catalytic activity in which the 35.4% CH₄ conversion and 29.5% C₂ selectivity could be obtained at 250 °C. The temperature profiles of reactor have been described and found that the distribution of hot spots on catalyst bed is related to the low temperature activity of catalyst.

Keywords Oxidative coupling of methane · BaCO₃/ZrO₂ catalyst · Hot spot · Low temperature

1 Introduction

Oxidative coupling of methane (OCM) is one of the promising routes for direct conversion of methane to higher hydrocarbons (especially ethane and ethylene), and the worldwide efforts have been made in this direction for the past 20 years [1–4]. Most of the research on this reaction has been directed to developing suitable catalysts which give high yield of higher hydrocarbon, and numerous kinds of catalysts have been tested for their oxidative coupling activity. Generally, these materials are reducible metals, alkali metals, alkaline earth metals and rare earth metals. ZrO₂ has acidic, basic, oxidizing and reducing properties.

K. Wang · S. Ji (⋈) · X. Shi · J. Tang State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Dong Road, P.O. Box 35, Beijing 100029, China e-mail: jisf_buct@live.cn

Utilizing these properties, ZrO_2 catalyst has been applied to reactions such as the synthesis of methanol from synthesis gas and dehydration of alcohols [5, 6]. The alkali-metal compound promoted ZrO_2 catalysts ever exhibit noticeable C_2 selectivity in the OCM reaction.

The temperature of OCM reaction is very high which has been reported at the range of 750–900 °C. However, Cameron et al. [7] noted that the reaction temperature reported for most of the studies on OCM was not the actual reaction temperature. Baerns et al. [8] reported that hot spots of 250 °C were present during the OCM reaction over La₂O₃/CaO catalyst. Pak and Lunsford [9] described the thermal effects and magnitude of the hot spots for Na–W–Mn catalysts and found the temperature on catalyst bed was as high as 150 °C. Generally speaking, hot spots can obviously cause detrimental consequences on the operation of the reactor, such as temperature runaway, catalyst deactivation, undesired side reactions, and deep oxidation of products.

More recently, some work had been done successfully to apply the thermal effects as an energy source for low temperature OCM reaction which can run under 600 °C. Wang et al. [10] prepared BaCO₃/La₂O₃ catalysts by urea combustion method and achieved the well low temperature OCM performance. Dalai [11] had succeeded to apply the thermal effects as an energy source for the low temperature OCM reaction over Mn/Na₂WO₄/SiO₂ catalyst. Under the $CH_4/O_2 = 2.0$ and 370 °C reaction condition, 14% C_{2+} yield could be achieved. In this work, the application of thermal effect on low temperature OCM reaction over BaCO₃/ZrO₂ catalysts with different BaCO₃ content was carried out and the result revealed that the thermal effect was responsible for the OCM catalytic activity at low temperature conditions and the content of BaCO₃ had an important influence for the low temperature OCM reaction.

2 Experimental

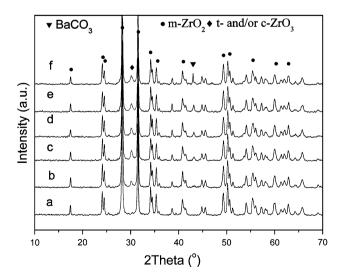
2.1 Catalyst Preparation

The catalysts were prepared as follows: a mixture of zirconium oxide (ZrO₂), barium carbonate (BaCO₃) and deionizer water, in an appropriate molar ratio, was stirred at room temperature to form suspension solution. Then the resultant solution was dried 120 °C for 24 h and calcined in air at 800 °C for 4 h. Because the decomposing temperature of barium carbonates is above 1,400 °C. So, in these catalysts, the element of barium exists in barium carbonate. The content of barium carbonate is in the range of 2.5–15 wt%. All the catalyst samples were crushed and sieved to 80–120 mesh size.

2.2 Catalyst Characterization

The phase structure of the catalyst was characterized by X-ray powder diffraction (XRD) on Bruker D8 diffractometer using Cu Ka radiation at 40 kV and 40 mA. The specific surface area of the catalysts was measured by nitrogen adsorption at liquid nitrogen temperature, with a Thermo Electron Corporation Sorptomatic instrument. X-ray photoelectron spectroscopy (XPS) experiment was detected on an ESCALAB250 (Thermo Electron Co.) using Al $K\alpha$ as the exciting radiation at a constant pass energy of 50 eV. The binding energy values were corrected using the C 1s peak at 285.0 eV. Near-surface compositions were calculated from peak areas using the sensitivity factors, which were provided in the software of the instrument. Temperature-programmed desorption of carbon dioxide (CO₂-TPD) experiments were carried out using a Thermo Electron Corporation TPD/R/O 1100 series catalytic surfaces analyzer equipped with a TCD detector. The catalyst sample (0.1 g) was treated at 800 °C in helium flow for 1 h and then saturated with pure CO2 flow after cooling to 100 °C. After purging with helium at 100 °C for 1 h to remove weakly physisorbed CO2, the sample was heated to 450 °C at a rate of 10 °C/min in a helium flow (20 ml/min).

2.3 Catalytic Activity Measurement


The catalytic activity test was carried out in a tubular fixed-bed flow micro-reactor made of quartz (i.d., 6 mm; length, 350 mm) under atmospheric pressure. Fresh catalyst (0.5 g, 80–120 mesh) was loaded in the reactor and the length of the catalyst bed was ca. 10 mm. Before reaction, the catalysts were pretreated with O₂ at 700 °C for 30 min, and decreased reactor temperature to 500 °C. Then, reactant gasses, methane and oxygen without any diluents, at the gas hourly space velocity (GHSV) of 18,000 ml/g h were co-fed into the reactor. The temperature of reactor was

controlled using a thermocouple attached to the outer wall of the reactor at a position corresponding to the center of the catalyst bed length. Additionally, a small diameter quartz capillary tube was used as a thermocouple well, in which a thermocouple could be moved easily to measure the axial temperature along the length of the catalyst bed. The outlet products were detected by two on line gas chromatography (Beijing East & West Electronics Institute, GC-4000A) equipped with a TCD detector with a TDX column which can separate O_2 , C_0 , CH_4 , and a Poropak Q column which can separate CH_4 , CO_2 , C_2H_4 and C_2H_6 . The calculations of methane conversion and C_2 selectivity were based on total carbon balance.

3 Results and Discussion

3.1 Characterization Results of Catalysts

The XRD patterns of the fresh catalysts are shown in Fig. 1. The ZrO₂ sample shows the crystalline bulk structures of pure ZrO₂ to be dominated by monoclinic zirconium oxide (m-ZrO₂, Fig. 1a). For BaCO₃/ZrO₂ catalysts, besides BaCO₃ and monoclinic ZrO₂, some trace amounts of tetragonal ZrO₂ (t-ZrO₂) and/or face-centered cubic ZrO₂ (c-ZrO₂) are also detectable. Generally, ZrO₂ has acidic, basic, oxidizing and reducing properties [12]. The basic of the ZrO₂ favors adsorption of CO₂ to form carbonate in air. However, no carbonate phases of the zirconium species are observed from XRD results. Based on the XPS analyses, some CO₃²⁻ are detected on the surface of ZrO₂ sample. Hence it is reasonable to believe that the carbonates, which are formed during preparation,

Fig. 1 The XRD pattern of fresh catalysts (a) ZrO₂; (b) 2.5% BaCO₃/ZrO₂; (c) 5.0% BaCO₃/ZrO₂; (d) 7.5% BaCO₃/ZrO₂; (e) 10% BaCO₃/ZrO₂; (f) 15% BaCO₃/ZrO₂

158 K. Wang et al.

Table 1 Characterization results of the fresh and used catalysts

Catalysts	Zr 3d _{5/2}		Ba 3d _{5/2}		O 1s		C 1s		XRD results			Surface
	BE (eV)	at.%	BE (eV)	at.%	BE (eV)	at.%	BE (eV)	at.%	ZrO ₂ ^b	BaCO ₃	Crystal size (nm) ^c	area (m²/g)
ZrO ₂	181.7	69.4	-	-	531.4	27.9	289.6	2.7	m	_	44.1	3.9
ZrO ₂ (used) ^a	181.6	69.3	-	-	531.2	27.9	289.7	2.8	m	_	44.5	3.4
2.5% BaCO ₃ /ZrO ₂	181.8	71.8	780.5	0.7	531.4	25.0	289.6	2.5	m, t, c	No	42.2	3.5
2.5% BaCO ₃ /ZrO ₂ (used) ^a	181.7	71.5	780.4	0.9	531.3	25.2	289.7	2.4	m, t, c	No	43.1	3.1
5.0% BaCO ₃ /ZrO ₂	181.8	71.1	780.5	0.9	531.2	25.1	289.7	2.9	m, t, c	Yes	42.7	3.3
5.0% BaCO ₃ /ZrO ₂ (used) ^a	181.6	70.5	780.5	1.2	531.3	25.3	289.6	3.0	m, t, c	Yes	43.3	3.0
7.5% BaCO ₃ /ZrO ₂	181.7	69.2	780.3	1.4	531.3	26.3	289.6	3.1	m, t, c	Yes	42.5	3.2
7.5% BaCO ₃ /ZrO ₂ (used) ^a	181.8	68.7	780.4	1.6	531.2	26.4	289.7	3.3	m, t, c	Yes	43.6	2.8
10% BaCO ₃ /ZrO ₂	181.8	68.2	780.5	3.1	531.3	25.9	289.6	3.5	m, t, c	Yes	42.3	3.0
10% BaCO ₃ /ZrO ₂ (used) ^a	181.8	66.4	780.3	3.6	531.4	26.3	289.7	3.7	m, t, c	Yes	43.7	2.7
15% BaCO ₃ /ZrO ₂	181.7	57.3	780.4	4.0	531.3	33.8	289.6	4.9	m, t, c	Yes	41.3	2.7
15% BaCO ₃ /ZrO ₂ (used) ^a	181.8	55.7	780.5	4.7	531.2	34.4	289.6	5.2	m, t, c	Yes	42.8	2.5

^a The used catalysts were drawn after auto-extinct of OCM reaction at the holding temperature

Table 2 Catalytic performance of the BaCO₃/ZrO₂ catalyst at 350 °C

Catalysts	Starting T (°C)	Holding T (°C)	Conv. CH ₄ (%)	Sel. (%)		Yield	Holding		
				$\overline{\mathrm{C}_2}$	C_2H_4	CO ₂	CO	C ₂ (%)	Time (h)
ZrO ₂	630	600	23.6 ^a	26.8 ^a	15.1 ^a	40.8 ^a	32.2 ^a	6.33 ^a	1.2
2.5% BaCO ₃ /ZrO ₂	570	175	38.2	27.6	17.8	58.6	13.8	10.5	13.1
5.0% BaCO ₃ /ZrO ₂	570	250	38.5	29.7	18.9	57.2	13.1	11.4	10.7
7.5% BaCO ₃ /ZrO ₂	580	250	39.2	30.1	19.8	55.6	14.3	11.8	7.4
10.0% BaCO ₃ /ZrO ₂	590	250	36.1	31.5	20.2	54.8	13.7	11.4	5.3
15.0% BaCO ₃ /ZrO ₂	590	300	32.7	32.2	20.9	54.4	13.4	10.5	0.6
BaCO ₃	750	750	4.9	51.1 ^b	13.7 ^b	31.1 ^b	17.8 ^b	2.5 ^b	-

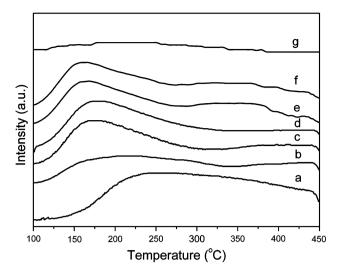
Reaction conditions: GHSV = 18,000 ml/g h, $CH_4/O_2 = 2.0$

are highly dispersed in ZrO_2 catalysts. For 2.5% BaCO₃/ ZrO_2 sample, only the ZrO_2 phases are detected. With the increase of BaCO₃ content, BaCO₃ phases are also detected at 5.0% and above 5.0% BaCO₃ content. The XRD patters of the used catalysts are also tested (no shown) and phase structures are similar with that of the fresh catalysts. However, the ZrO_2 crystal size of the used catalysts is bigger than that of the fresh catalysts (Table 1).

The XPS results and surface areas of the fresh and used catalysts are shown in Table 1. It can be seen that the binding energy (BE) values of Zr $3d_{5/2}$ peak and Ba $3d_{5/2}$ peak are ca. 181.7 eV and ca. 780.5 eV, respectively. The C 1s spectra shows two peaks at 285.0 and 289.6 eV, which can be assigned to surface contaminants and CO_3^{2-} , respectively. Based on the XPS peak areas and the atomic

sensitivity factors of elements, the elemental compositions on the surface of $BaCO_3/ZrO_2$ catalysts are calculated. For the fresh catalyst, with increasing $BaCO_3$ content from 2.5 to 15%, the surface composition of barium increases from 0.7 to 4.0%, while the surface composition of zirconium decreases from 71.8 to 57.3%. This suggests that Ba accumulated on the surface of catalysts with increasing $BaCO_3$ content. At the same time, the specific surface areas of the fresh catalysts slightly decrease from 3.5 to 2.7 m^2/g .

From Table 1, it can be seen that the $Zr.3d_{5/2}$ and Ba $3d_{5/2}$ BE values of the used catalysts (after stability test at holding temperature, see Table 2) were essentially identical to those of the fresh catalysts, but significant changes in the composition of Zr and Ba were seen after the reaction. For the $BaCO_3/ZrO_2$ catalysts, the amount of Zr decreased



^b m monoclinic ZrO₂; t tetragonal ZrO₂; c face-centered cubic ZrO₂

^c Crystal size of ZrO₂ was determined from X-ray diffraction data using Scherrer's equation

 $^{^{\}mathrm{a}}$ The data were recorded at reactor temperature = 600 $^{\circ}\mathrm{C}$

 $^{^{\}rm b}$ The data were recorded at reactor temperature = 750 $^{\circ}$ C

Fig. 2 CO₂-TPD profiles of catalysts (*a*) ZrO₂; (*b*) 2.5% BaCO₃/ZrO₂; (*c*) 5.0% BaCO₃/ZrO₂; (*d*) 7.5% BaCO₃/ZrO₂; (*e*) 10% BaCO₃/ZrO₂; (*f*) 15%BaCO₃/ZrO₂; (*g*) BaCO₃

on the used catalysts, whereas the amount of Ba increased markedly. The above results indicate that the accumulation of Ba occurred on the surface of the catalyst in the OCM reaction. In addition, as compared with the fresh catalysts, the surface area of the used catalysts also has a slight decrease (Table 1).

Based on CO₂ desorption peaks, the weak base sites, moderate based sites and strong base sites can be identified [13]. From the CO₂-TPD profiles of the catalysts, it can be seen that the profile of ZrO₂ revealed a very board peak which indicated that three type based sites were presented in ZrO₂ catalyst (Fig. 2a). Whereas only slightly moderate based sites was observed on the BaCO₃ catalysts (Fig. 2g). For the BaCO₃/ZrO₂ catalyst, the CO₂-TPD profiles have an obvious difference with that of ZrO₂. With higher BaCO₃ loading, the CO₂ desorption peak shifts to lower temperature and the desorption amount of CO₂ also decreases gradually. The result indicates that the addition of BaCO₃ changed the base sites and amount of base.

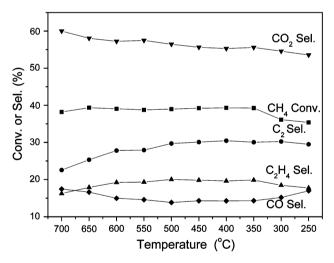
3.2 Catalytic Activity

In the activity test, the detailed process is following: once the OCM reaction is started at starting temperature (the start temperature of OCM reaction), the reactor temperature was first increased to 700 °C and hold for 30 min, then decreased to lower temperature every 50 °C. At every temperature point, after 30 min holding time, the outlet products were detected by two on line gas chromatography. The catalytic performance of the catalysts is shown in Table 2. For the OCM reaction, it can be observed that the holding temperature (the lowest reaction temperature at which OCM reaction can run) varies with the content of the

BaCO₃ in the catalysts. For the pure ZrO₂ catalyst, the OCM reaction can start at 630 °C and hold at 600 °C. Suzuki and Moffat [14] reported the similar results in which the OCM reaction can run at 530 °C over the pure ZrO₂ catalyst. However, when adding some BaCO₃ to the ZrO₂ catalysts, the starting and holding temperature have remarkable decrease. For example, for the 2.5% BaCO₃/ ZrO₂ catalyst, the OCM reaction can start at 570 °C, whereas hold at 175 °C. Nevertheless, with higher BaCO₃ loading, the starting and holding temperature are elevated correspondingly. For example, 5.0-15% BaCO₃/ZrO₂ catalysts can begin OCM reaction at 570, 580 and 590 °C, while hold at 250 and 300 °C, respectively (Table 2). Once the beginning of OCM reaction, the reaction can be operated at the lower temperature. For 5.0-10% BaCO₃/ZrO₂ catalysts, the OCM reaction can run at the holding temperature of 250 °C about 2 h (Table 2). However, for 15% BaCO₃/ZrO₂ catalyst, the reaction will be extinct soon after the control temperature is below 300 °C (Table 2).

To some extent, the difference of the holding temperature represents the catalytic activity of the catalysts. It should be noted that the CO₂ selectivity is very high over all the catalysts. Especially on the BaCO₃ promoted ZrO₂ catalysts, the CO₂ selectivity is above 54.4%. This result suggests that, in the OCM reaction, the highly exothermic methane combustion (Eq. 1) occurs in a notable extent. As a result, the large heat can be given in the reaction.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 $\Delta H_{298} = -802 \text{ kJ/mol}$ (1.)


For the pure ZrO₂ catalyst, with the addition of 2.5% BaCO₃, the CO₂ selectivity has an obvious enhancement (from 40.8 to 58.6%). Therefore, more heat releases in the OCM reaction on the 2.5% BaCO₃/ZrO₂ catalyst. This indicates the BaCO₃ can increase methane combustion catalytic activity of the ZrO2 catalyst. Moreover, the releasing heat can help to ignite or hold OCM reaction in some condition. As a result, the starting and holding temperature of the BaCO₃/ZrO₂ catalysts have an obvious decrease comparing with that of the pure ZrO₂ catalyst. The CO₂ selectivity gradually decreases with the increase of BaCO₃ content, while the C₂ selectivity increases concomitantly. This result indicates that the high content of BaCO₃ can restrain the methane combustion activity and increase the OCM activity of the BaCO₃/ZrO₂ catalysts. For the used catalyst, the average crystal size of ZrO₂ has slight increase and the surface areas of the catalysts also has some decrease, which might be a reason for the catalyst deactivation. In addition, the changes in surface composition could be another reason for changes in the catalytic activity of ZrO₂-based catalyst. The above XPS results indicate the amount of Ba increased obviously, which can restrain the OCM catalytic activity and methane combustion activity.

160 K. Wang et al.

For the BaCO₃ catalyst, the CH₄ conversion is 4.9% at 750 °C. The pure ZrO₂ catalyst has poor OCM catalytic activity at 600 °C. With the addition of BaCO₃, the catalytic activity has an obvious enhancement. The CH₄ conversion improves and reaches maximum (39.2%) over the 7.5% BaCO₃/ZrO₂ catalyst. With higher BaCO₃ loading (above 7.5%), the CH₄ conversion decreases gradually. Although C₂ selectivity increases gradually with higher BaCO₃ content from 2.5 to 15%, the maximum C₂ yield can be drawn on the 7.5% BaCO₃/ZrO₂ catalyst. At the same time, with increasing C_2 selectivity, CO_x selectivity decreases gradually, particularly CO₂ selectivity decreases from 58.6 to 54.4%. Au and co-workers [15] claimed that with addition of BaCO₃, the dioxygen species of catalyst could be deprived. As a result, the CH₄ oxidative dehydrogenation process is enhanced, while deep oxidation process is suppressed. Therefore, BaCO₃ is a good promoter for ZrO₂ catalysts to product C₂ hydrocarbons by OCM reaction. In comparison with OCM catalytic activity of catalysts one another, 7.5% BaCO₃/ZrO₂ catalyst is selected as a representation for further study.

The influence of temperature on OCM reaction over 7.5% BaCO₃/ZrO₂ catalyst is shown in Fig. 3. The CH₄ conversion and CO₂ selectivity decrease from 38.2 and 60.0 to 35.4 and 53.5%, respectively, with the decrease of

Fig. 3 Effect of reactor temperature on the performance of 7.5% BaCO₃/ZrO₂ catalyst GHSV = 18,000 ml/g h, $CH_4/O_2 = 2.0$

reactor temperature from 700 to 250 °C, whereas the C_2 selectivity increases from 22.6 to 29.5%. This result suggests, at least in the range of reactor temperature (700–250 °C), that low temperature does not favor the conversion of CH₄, but benefits the manufacture of C_2 hydrocarbons. For the 7.5% BaCO₃/ZrO₂ catalysts, OCM reaction can hold at as low reactor temperature as 250 °C. This mainly caused by the methane combustion which can supply large heat for the OCM reaction. From Fig. 3, it can be seen that the maximum peak temperature is as high as 555.1 °C on the 7.5% BaCO₃/ZrO₂ catalysts. This is the reason why the OCM reaction can run at as low reactor temperature as 250 °C.

Table 3 lists the catalytic performance of OCM reaction under different CH₄/O₂ ratio over 7.5% BaCO₃/ZrO₂ catalyst. It can be seen that the CH₄/O₂ ratio has an obvious effect on catalytic activity of the OCM reaction. With increasing CH₄/O₂ ratio from 2.0 to 3.0, the CH₄ conversion decreases from 39.2 to 28.7% and the C₂ selectivity increases from 30.1 to 36.1%, respectively. In addition, the starting temperature elevates from 580 to 590 °C and the holding temperature increases from 250 to 410 °C, respectively. Correspondingly, the CO₂ selectivity decreases from 55.6 to 44.8%. That means, with the increase of CH₄/O₂ ratio, the CH₄ oxidative dehydrogenation process is enhanced, while the methane combustion process is suppressed. As a result, the holding temperature increases because of the less exothermic reactions.

3.3 Temperature Profiles

Although the OCM reaction is known to be highly exothermic, relatively little research has addressed the magnitude of the temperature profiles (hot spots) that may exist in catalyst bed during the reaction. Along the axis of the catalyst bed, the temperature profiles were measured during reaction by sliding the internal thermocouple 15 mm upstream and downstream from the center of the catalyst bed. It is estimated that the position of the inner thermocouple is accurate to ± 1 mm. The axial temperature profiles of BaCO₃/ZrO₂ catalyst bed are shown in Fig. 4. The temperature of the thermocouple on the outside of the reactor is 350 °C. When the CH₄/O₂ mixtures are

Table 3 Catalytic activity under different CH₄/O₂ over 7.5% BaCO₃/ZrO₂ catalyst

CH ₄ /O ₂ ratio	Starting	Holding	Conv.	Sel.	Yield			
	T (°C)	T (°C)	CH ₄ (%)	C ₂ (%)	C ₂ H ₄ (%)	CO ₂ (%)	CO (%)	C ₂ (%)
2.0:1	580	250	39.2	30.1	19.8	55.6	14.3	11.8
2.5:1	580	315	33.4	32.7	19.4	50.3	17.0	10.9
3.0:1	590	410	28.7	36.1	18.9	44.8	19.1	10.4

Reaction conditions: GHSV = 18,000 ml/g h, reactor temperature = 450 °C

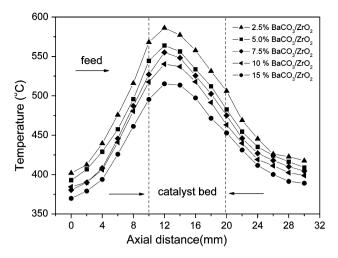


Fig. 4 Axial temperature profile in the reactor on BaCO₃/ZrO₂ catalyst at $CH_4/O_2 = 2.0$, GHSV = 18,000 ml/g h, Reactor temperature = 350 °C

introduced to the reactor, a rapid increase in temperature is detected near the entrance of the catalyst bed. The position of the maximum peak temperature is detected near 2 mm upstream from the entrance of the catalyst bed. This is mainly a result of thermal conductivity along the thermocouple and the wall. This phenomenon is also responsible, in part, for the broadening of the temperature profile in the catalyst bed. Similar results were obtained by Lunsford over the Mn/Na₂WO₄/SiO₂ and Mn/Na₂WO₄/MgO catalysts [9]. The temperature of upstream is lower than that of the downstream along the direction of feed flow. This may be caused by the thermal conductivity and thermal radiation along the thermocouple and the wall. For 2.5% BaCO₃/ZrO₂ catalyst, the maximum peak temperature of catalyst bed is higher than those of other catalysts, which is agree with the lowest holding temperature (175 °C). At the same time, the highest peak temperature (586.2 °C) at the entrance of the catalyst bed corresponds to the highest CO₂ selectivity (Table 2). Therefore, with higher BaCO₃ content, the methane combustion activity of the catalysts and the maximum of temperature profile decreases gradually. Correlated with the catalytic performance, this phenomenon is agree with the change of the C_2 and CO_x selectivity over the BaCO₃/ZrO₂ catalysts.

Figure 5 shows the temperature profiles of 7.5% BaCO₃/ ZrO_2 catalyst bed under different CH_4/O_2 ratio and reactor temperature = 450 °C. When the CH_4/O_2 ratio increases from 2.0 to 3.0, the position of the maximum peak temperature on the catalyst bed moves to downstream about 2 mm (Fig. 5). This may be mainly caused by the thermal conductivity along the thermocouple and the wall. The maximum peak temperature at $CH_4/O_2 = 2.0$ ratio is 117.5 °C higher than the outer reactor temperature. And even at the $CH_4/O_2 = 3.0$ ratio, the temperature increases

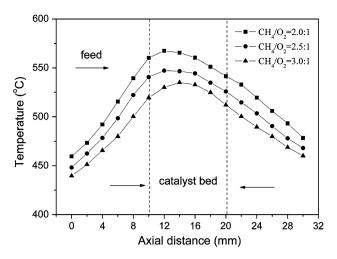


Fig. 5 Axial temperature profile in the reactor on 7.5% $BaCO_3/ZrO_2$ catalyst at GHSV = 18,000 ml/g h, Reactor temperature = 450 °C

by 85.1 °C. The decrease of the maximum peak temperature indicates that there has less methane combustion reaction with high CH_4/O_2 ratio. Correspondingly, an obvious decrease in the CH_4 conversion and CO_2 selectivity are observed (Table 3), which are correspond with the small shift decrease of the hot spot temperature.

Clearly, the exothermic oxidation reaction occurs mainly in a small volume near the entrance of the catalyst bed, producing hot spots that further accelerate the rate of reaction until the depleted. It should be noted that in all cases the O₂ is almost completely (>90%) consumed. For low-temperature OCM reaction, because of the limit of activation energy, the existence of hot spots are firstly due to the highly exothermic formation of CO_x, which consequently provides heat for the ignition of OCM reaction to produce C₂H₄ and C₂H₆. It is the thermal effect which is believed to be responsible for the OCM reaction taking place as low as 175 °C over 2.5% BaCO₃/ZrO₂ catalyst. So the thermal effect is a positive factor to keep the reactive activity for low-temperature OCM reaction.

4 Conclusions

The low-temperature catalytic performance of ZrO₂ for OCM reaction is observably enhanced by the addition of BaCO₃. The content of BaCO₃ has an important influence on the catalytic activity of the OCM and the holding temperature of the catalysts. The 7.5% BaCO₃/ZrO₂ catalyst shows excellent catalytic activity, the 35.4% CH₄ conversion and 29.5% C₂ selectivity can be achieved at 250 °C. Below 700 °C, lower temperature is benefit to suppress the deep oxidation and enhance C₂ selectivity. The magnitude of the hot spots has been characterized. The results reveal that hot spots which are due to the thermal

162 K. Wang et al.

effects of OCM reaction are responsible for the catalyst activity at low temperature. The thermal effects of OCM reaction could be properly applied as a positive factor to make the reaction in progress at low temperature.

Acknowledgments Funding from the National Basic Research Program of China (project no. 2005CB221405) is gratefully acknowledged.

References

- 1. Maitra AM (1993) Appl Catal A 104:11
- 2. Mleczko L, Baerns M (1995) Fuel Proc Technol 42:217
- 3. Lunnsford JH (1995) Angew Chem Int Ed Engl 34:970

- 4. Lunnsford JH (2000) Catal Today 63:165
- 5. He MY, Ekerdt JG (1984) J Catal 90:17
- Maruya K, Maehashi T, Haraoka T, Narui S, Domen K, Onishi T (1985) J Chem Soc Chem Commun 1494
- Kooh A, Dubois JL, Mimoun H, Cameron CJ (1990) Catal Today 6:453
- 8. Schweer D, Mleczko L, Baerns M (1994) Catal Today 21:357
- 9. Pak S, Lunsford JH (1998) Appl Catal A 168:131
- 10. Wang JX, Chou LJ, Zhang B, Song HL, Yang J, Zhao J, Li SB (2006) Catal Commun 7:59
- Malekzadeh A, Abedini M, Khodadadi AA, Amini M, Mishra HK, Dalai AK (2002) Catal Lett 84:45
- 12. Tanabe K (1985) Mater Chem Phys 13:347
- Ma ZY, Yang C, Wei W, Li WH, Sun YH (2005) J Mol Catal A 227:119
- 14. Suzuki K, Moffat JB (1992) Catal Lett 16:389
- 15. Au CT, He H, Lai SY, Ng CF (1997) Appl Catal A 159:133

